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Abstract. We consider time series of financial data as the Dow Jones Index with respect to the existence of
local order. The basic idea is that in spite of the high stochasticity in average there might be special local
situations where there local order exist and the predictability is considerably higher than in average. In
order to check this assumption we discretise the time series and investigate the frequency of the continuation
of definite words of length n first. We prove the existence of relatively long-range correlations under special
conditions. The higher order Shannon entropies and the conditional entropies (dynamical entropies) are
calculated, characteristic fluctuations are found. Instead of the dynamic entropies which yield mean values
of the uncertainty/predictability we finally investigate the local values of the uncertainty/predictability
and the distribution of these quantities.

PACS. 05.45.Tp Time series analysis – 02.50.Ey Stochastic processes – 65.50.+m Thermodynamic
properties and entropy

1 Introduction

One of the basic problems of economy and finance is the
predictability of future events. We know from our every-
day experience that in spite of the complexity of these
processes some individuals are more successful in predict-
ing than others.

Within a large scale of uncertainty predictions are in-
deed possible and there exist good and bad methods to
make a prediction. The analysis of financial time series
from the point of predictability has attracted a lot of in-
terest [1–6].

Usually one is interested in the prediction of fre-
quent events on a short time horizon [4] or of the rare
events (crashes, bubbles, anti–bubbles) on a longer time
horizon [5]. Since predictability is far from being perfect
one has to address the significance of the analysis. For
rare events there is no methodology to deal with mispre-
dictions [6].

Here we concentrate on predictability and significance
on a daily time horizon using methods which are based on
Shannons concept of information entropy [7].

We consider for simplicity one-dimensional time series
of events in discrete state space and discrete time. Let us
discuss several characteristic cases.

As the basic quantity for estimating predictability we
study the local probability distribution and the Shannon
entropies H for certain subtrajectories, in particular con-
ditional (dynamical) entropies [8,9]. Assuming that an ob-
servation has provided us a certain trajectory of length
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n (an n–word), we may ask for the uncertainty of pre-
dicting the next state (letter). This is nothing else than
the difference between the Shannon entropies for trajec-
tories (words) of length n+ 1 and trajectories of length n:

hn = Hn+1 −Hn. (1)

This conditional entropy measures the uncertainty of pre-
dicting a state one step in the future, given a history con-
sisting of n states, i.e. the present state and the previ-
ous n − 1 states is known [10]. Thus the estimation of
Shannons n-gram entropies, which often are called block
entropies for a series of word length n, is our basic prob-
lem. Predictability is measured in this work by differences
of Shannon entropies, in other words by conditional en-
tropies. The existence of long correlations is expressed by
long decreasing tails of the conditional entropies hn. In
general our expectation is that any long-range memory de-
creases the conditional entropies and improves the chances
for predictions.

2 Conditional entropy of financial time series

This section is devoted to the introduction of several ba-
sic terms stemming from information theory which were
mostly used by Shannon already. Let us assume that the
processes or structures to be studied are modelled by tra-
jectories on discrete state spaces having the total length L.
Let λ be the length of the alphabet. Further let A1. . .An
be the letters of a given subtrajectory of length n ≤
L. Let further p(n)(A1. . . An) be the probability to find
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a block (subtrajectory) with the letters A1. . . An in the
total trajectory. Then we may introduce the entropy per
block of length n (the n-gram entropy):

Hn = −
∑

p(n)(A1. . . An) logλ p
(n)(A1. . . An). (2)

From the block entropies we derive conditional entropies
(n-gram dynamic entropies) as the differences hn =
Hn+1 −Hn. Further we define

rn = 1− hn (3)

as the average predictability of the state following after
a measured n-trajectory. We remember that hn = 1 is
the maximum of the uncertainty (in units of log(λ)), so
the predictability is defined as the difference between the
maximal and the actual uncertainty. In other words, pre-
dictability is the information we get by exploration of the
next state in the future in comparison to the available
knowledge.

The limit of the dynamic n-gram entropies for large
n is the entropy of the source (called dynamic entropy
or Kolmogorov–Sinai entropy). The predictability of pro-
cesses is closely connected to these dynamic entropies. Let
us consider a certain section of length n of the trajectory,
a time series, or another sequence of symbols A1. . . An,
which is often denoted as a subcylinder. We are interested
in the uncertainty of the predictions of the state trailing
this particular subtrajectory of length n. Considering the
concepts of Shannon again we define now the expression

h(1)
n (A1. . .An) =

−
∑

p(An+1|A1. . . An) log p(An+1|A1. . .An) (4)

as the conditional uncertainty of the next state (1 step
into the future) following behind the measured trajectory
A1. . . An (Ai ∈ alphabet). Henceforth all logarithms are
measured in λ-units. We note that in these units the in-
equality holds:

0 ≤ h(1)
n (A1. . .An) ≤ 1. (5)

Further we define

r(1)
n (A1. . .An) = 1− h(1)

n (A1. . .An) (6)

as the predictability of the next state following after a
measured subtrajectory, which is a quantity between zero
and one. We note that the average of the local uncertainty

hn = h(1)
n =

〈
h(1)
n (A1. . .An)

〉
=
∑

p(A1. . .An)h(1)
n (A1. . .An)

leads us back to Shannons uncertainty (n-gram dynamic
entropy). A possible generalisation concerns the case that
we want to predict the state which follows not immediately
after the observed n-string, but only after k steps into the
future [11]. We define

h(k)
n (A1. . . An) =

−
∑

p(An+k|A1. . .An) log p(An+k|A1. . .An)

as the uncertainty of the state which occurs k steps
into the future after the observation of an n-block, or
symbolically

[A1. . . An](k − 1 states)[An+k =?].

Further we accordingly define the predictabilities

r(k)
n (A1. . .An) = 1− h(k)

n (A1. . . An). (7)

For n = 1 the predictability is closely related to the
transinformation (mutual information) which may be ex-
pressed as [9]

I(k) = r
(k)
1 + (h0 − 1).

For systems with long memory it makes sense to study
the whole series of predictabilities with increasing n-values
(where n denotes the lower index)

r
(k)
1 , r

(k)
2 , r

(k)
3 , . . . , r(k)

m .

Here m is an estimate for the length of the memory. Due
to the inequality

r
(k)
n+1 ≥ r(k)

n

the average predictability may be improved by taking lon-
ger blocks into account. In other words, one can gain ad-
vantage for predictions by basing the predictions not only
on actual states but on whole trajectory blocks which rep-
resent the actual state and its history.

2.1 Entropy analysis of financial time series

Prediction of strong noisy data using classical linear meth-
ods usually fails to give an accurate and reliable confi-
dence level of the prediction. Moreover the linear methods
are dominated by the most frequent events. However pre-
dictability may not be constant in time and even higher
for seldom events. The concept of entropy and local pre-
dictability in combination with classical methods is a good
candidate to give reliable results. Applications of these
concepts to meteorological strings were given in [11,12]
and to nerve signals in [13,16].

In the following our concept will be demonstrated on
daily stock index data St: Dow Jones 1900-1999 (27 044
trading days). Since the stock index itself has an exponen-
tially growing trend (see the inset of Fig. 1) one uses daily
logarithmic price changes

xt = ln(St)− ln(St−1). (8)

A direct application of the entropy concept requires a par-
titioning of the real value data xt into symbols At of an
alphabet having the length λ. Finding an optimal parti-
tion and alphabet is a process of maximising the entropy
converging to the Kolmogorov–Sinai entropy.

However for strong noisy signals with short memory an
equal frequency of the letters is nearly optimal. For sta-
tistical reasons one would like to choose a small alphabet
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Fig. 1. Dow Jones (upper curve) and local uncertainty h5

of the 6th symbol when seen 5 symbols (lower curve) for the
second half of 1987. The inset shows the Dow Jones in a log-
arithmic scale for the full period 1900–1999. The greyvalue in
the lower curve codes the level of significance calculated from
surrogates with memory of 2. Dark represents a large devia-
tion from the noise level (good significance). There is no trivial
coherence between the price evolution (upper curve) and pre-
dictability (lower curve). However following a larger downturn
the predictability is likely to increase (for instance the higher
predictability following the October crash).

but a large alphabet for the backmapping of the predicted
symbols At+1 to the real values xt+1.

To be concrete λ = 3 andAt = 0;xt < −0.0025 (strong
decrease in the stock value), At = 2;xt > 0.0034 (strong
increase), At = 1 (intermediate) were chosen. With this
partition the one symbol entropy is H1 = 1 as well as
the uncertainty without prior knowledge is h0 = 1 by def-
inition and one can discuss words up to 6 letters with
statistical significance.

The asymmetry in the partition is due to the expo-
nentially growing trend expressed in a positive mean log-
arithmic price change 〈x〉 = 0.0002 and a small skew in
the distribution of price changes.

The result of the calculation of the local uncertainty
hn(A1. . .An) for the next trading day following behind an
observation of n trading days A1. . . An according to equa-
tion (4) for n = 5 is plotted in Figures 1 and 4. The local
uncertainty is close to one, i.e. the local predictability is al-
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Fig. 2. Conditional entropy hn = Hn+1 −Hn as a function of
word length n. Beyond n = 5 the calculation of the conditional
entropy is not reliable due to large statistical errors [8,9].

most very small. The value one means that the conditional
probabilities for all three symbols are identical, whereas
values smaller than one mean that the three symbols have
different conditional probabilities – i.e. some prediction
is possible. Behind certain patterns of stock movements
A1. . . An the local predictability reaches 8% – a notable
value for the stock market, which is usually purely ran-
dom. The mean predictability over the full data set is less
then 2% (see Fig. 2).

Looking at the in a time window averaged local uncer-
tainty (Fig. 4) one finds certain periods of higher averaged
predictabilities. In the last few decades the averaged pre-
dictability is relatively small – this could be connected
to the beginning of computerised trading. However, a fu-
ture increase of the averaged predictability seems to be
expected during some crisis.

The significance’s prediction is treated by calculating
a distribution of local uncertainty hSn(A1. . . An) by help
of surrogates [14–17]. Our surrogate sequences have the
same two point probabilities p(2)(A2|A1) as the original
sequence [15]. The level of significance K is calculated as

Kn(A1. . . An) =
∣∣∣∣hn(A1. . .An)− 〈hSn(A1. . .An)〉

σ

∣∣∣∣ , (9)

where 〈hSn(A1. . . An)〉 is the mean and σ is the standard
deviation of the local uncertainty distribution for the word
A1. . . An [16,17].

Assuming Gaussian statistics K ≥ 2 represents con-
fidence greater then 95%. However the local uncertainty
distribution (Fig. 3) is more exponential. Therefor larger
K–values are required to guarantee significance. For the
analysed data set a word length up to 5 seems to give
reliable results.

Fortunately higher local predictabilities coincides with
larger levels of significance as seen in Figure 1 and Ta-
ble 1 (left).
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Table 1. Left: words with the smallest uncertainty hn (highest predictability rn = 1 − hn) have a good significance K. The
significance K is decreasing with the word length n due to finite size effects. Right: we list the empirically observed relative
frequencies of a larger downturn (0), a roughly constant market (1) or a larger upswing (3) from one trading day to the next,
for a variety of histories (summarised by our words (absolute frequency)) of the preceding five trading days. These are the most
predictable events from the left side.

word h3 K word h4 K word h5 K

020 0.971 27.9 1112 0.954 14.3 11110 0.919 9.5
112 0.971 30.5 0000 0.957 12.0 11120 0.926 9.1
110 0.977 23.4 1110 0.958 15.0 20000 0.926 6.9
120 0.981 29.4 0110 0.960 14.9 11112 0.931 8.7
000 0.982 18.5 0020 0.961 12.5 10120 0.933 5.2
212 0.983 19.5 1102 0.962 12.4 22202 0.933 9.4
202 0.984 22.9 2020 0.966 10.6 00000 0.934 6.4
111 0.985 20.1 0200 0.968 10.6 11011 0.937 9.7
121 0.985 12.4 0202 0.969 14.6 02000 0.939 5.7
012 0.987 14.2 0120 0.971 12.3 02020 0.941 5.1
102 0.988 10.5 2112 0.971 9.0 00020 0.943 6.4

word a. freq. r. freq. 0 r. freq. 1 r. freq. 2

11110 164 0.37 0.48 0.15
11120 71 0.41 0.44 0.15
20000 157 0.41 0.16 0.43
11112 153 0.16 0.42 0.42
10120 84 0.48 0.36 0.17
22202 144 0.29 0.21 0.50
00000 186 0.42 0.16 0.41
11011 144 0.22 0.51 0.27
02000 155 0.41 0.17 0.42
02020 87 0.51 0.21 0.29
00020 182 0.46 0.18 0.36
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Fig. 3. Local uncertainty distribution of the surrogate se-
quence for the word 11110.

For the prediction itself one can use the lookup Table 1
(right) obtained from the historical data. Most of the pre-
dictability is covered by the persistence of the volatility
(fluctuations), i.e. following a period of large price move-
ments (best seen for the words 20000, 00000 and 02000)
a further strong movement is likely – but the direction of
the movement (up or down) is unclear.

The interpretation is similar to that of weather fore-
casts: “tomorrows weather is likely to be the same as
todays weather” [12] reads in the financial context “tomor-
rows volatility is likely to be the same as todays volatil-
ity”. Improvements of this poor man’s predictability need
to consider longer histories.

According to the overall statistics assuming a Marko-
vian process with a short memory one would expect nearly
a symmetry between the probability of a strong increase
(symbol 2) and the probability of a strong decrease (sym-
bol 0) of the stock index following a certain pattern. These
expectations are also covered by the models in the finan-
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Fig. 4. Moving exponential average of the local uncertainty
h5 with an halflife period of 5 years for the full dataset.

cial community – ARCH and GARCH [18]. Notably this
symmetry is broken for most of the significant words. De-
viations from the Markovian expectations improves the
local predictability as well as the significance.

3 Conclusions

Our results show that local analysis is an appropriate tool
for studying the predictability of financial time series. Of
particular interest are local studies of the continuations
and predictabilities of certain local histories. Local corre-
lations are of specific interest since they improve the local
predictability. Hence one can in principle improve the pre-
dictions at certain time instants by basing the predictions
on observations of local histories.

Further we can conclude that there are specific sub-
strings, which are relatively seldom, where the uncertainty
is noticeably less than 1 – the predictability is better
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than 5%. In other words, there are specific situations
where the predictability is better than the average pre-
dictability. However the effect is quite small and shows
that the discussed financial time series is nearly random,
but not fully random and shows some order at specific
subtrajectories.

The authors thank R. Mantegna, F. Moss, A. Neiman and
D. Stauffer for many fruitful discussions.
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